Energy supply of a landfill site in the after care period by LFG, sun, oil, natural gas etc

Thirteenth International Waste Management and Landfill Symposium in Sardinia from 3-7 October 2011

Wolfgang H. Stachowitz / Falko Ender
DAS - IB GmbH

This presentation must not be copied. Publications and further reproductions require the written consent of the author. The proprietary notice pursuant to DIN ISO 16016 (December 2007) needs to be observed. All images DAS – IB GmbH.
Energy supply of a landfill site in the after care period by LFG, sun, oil, natural gas etc

DAS - IB GmbH
LFG- & Biogas - Technology
www.das-ib.de

1 Task
1.1 Interfaces
1.2 Initial situation and data base of the concept

2 Possible landfill gas utilisations
2.1 Basics of the profitability analysis
2.2 Microgas turbine
2.3 Dual fuel engines
2.4 Gas-Otto engines
2.5 Comparison of the plant utilisation

3 Further methods to cover the energy demand
3.1 Photovoltaic solar power plant
3.2 Landfill gas burners with boiler and heat exchanger

4 Comparison of the utilisation methods
1. **Task / interfaces / initial situation and data base of the concept**

- Self-sufficient (self-sustaining) energy supply of the existing installations in operation
- Economic comparison of the different plant technologies
- Covering of the electrical and thermal base loads through:
 - microgas turbine / dual fuel engines / gas - engines / heating boilers (two-media burners with landfill gas) in connection with a photovoltaic solar power plant (SPP)
- Measured values landfill gas quality and quantity for the individual gas wells, lines and the entire gas system
- Operational evaluations / technical data of the existing machine technology / ground plan gas collection system / landfill gas prognosis on the basis of the current operational evaluation
Energy supply of a landfill site in the after care period by LFG, sun, oil, natural gas etc

Development of the collected gas quantity and quality on the basis of monthly mean values

Gas flow

methane content

Gasmenge Bm³/h
CH4-Werte (%)

Development of the collected gas quantity and quality on the basis of monthly mean values

Gasmenge in m³/h
Konzentration in Vol. %
Energy supply of a landfill site in the after care period by LFG, sun, oil, natural gas etc

Landfill gas prognosis of a North German landfill

The diagram shows the theoretical gas production and gas extraction over the years, with a decrease in gas production expected from 2013 onwards. The green shaded area indicates the period of maximum operation for 10 years.
Energy supply of a landfill site in the after care period by LFG, sun, oil, natural gas etc

Assumed efficiency of the gas collection system 30 % and a CH₄ content of 50 vol.-%

Theoretically gas production

real gas production
Energy supply of a landfill site in the after care period by LFG, sun, oil, natural gas etc

DAS - IB GmbH
LFG- & Biogas - Technology
www.das-ib.de

- Base and surface sealing
- Municipal solid waste 1965 – 1992
- 11 ha // 2 million Mg$_{\text{tot}}$

Landfill body

- **Landfill gas**
 - 75 m3/h
 - 43 vol.-% CH$_4$
 - < 0.3 vol.-% O$_2$
 - 630,000 m3 / a '09

Leachate

- 2-stage RO

Building services engineering

- Propane gas boiler

CHP - unit

- Gas-Otto engine with 190 kW$_{\text{el}}$

Gas collection system

- 34 Gas Wells
- 6 manifold stations
- Loop line
- 1 booster station
- with 2 compressors

Heat / Thermal Energy

- 125 kW$_{\text{therm.}}$

Electricity

- 65 kW$_{\text{el}}$

Flaring

- Flare system (closed combustion)
Energy supply of a landfill site in the after care period by LFG, sun, oil, natural gas etc

Determination of the current state
Energy supply of a landfill site in the after care period by LFG, sun, oil, natural gas etc

Producers and consumers
2. **Possible landfill gas utilisations** / basics of the profitability analysis

- Landfill gas prognosis and raw gas analyses
- Internal power demand with 65 kW_{el} and a heat demand with approx. 125 kW_{th}, each as an annual mean value of the existing plant technology
- The installation in the existing CHP room
- **The service life of all aggregates is 10 years and 7,500 operating hours per annum**
- Utilisation of the existing plant technology such as the emergency cooler, flare, gas booster and raw gas analysis as far as this is possible
- Combustible: landfill gas with a calorific value of 5 kWh / m³
- The maintenance costs were considered on the basis of the operating hours and offers / price indications
- The fixed costs amount to € 0.15 per kWh for the electric energy plus the provisioning costs of € 2,000 / a, and the thermal energy costs of € 0.09 per kWh
- Allowance in acc. with EEC 2009 / as regards the turbine, possibly plus the technology bonus
3. Possible landfill gas utilisations / Microgas turbines

<table>
<thead>
<tr>
<th>Degree of utilisation</th>
<th>η therm. [%]</th>
<th>η electr. [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 %</td>
<td>46.2 to 52.7</td>
<td>29 to 33</td>
</tr>
</tbody>
</table>

118 to 280 kW therm. or 65 to 200 kW el.

Advantages: low maintenance costs, lower exhaust gas emissions as in gas engines, higher thermal use than in gas engines, operation with lower methane contents than in dual fuel and gas engines possible, longer service life than gas engines, REL remuneration (the German EEG-payment) plus technology bonus

Disadvantages: high investment costs, lower electrical efficiency than gas engines, gas processing is usually required – compared to engines, a significantly higher primary pressure is required (5 bar instead of 80 mbar pressure IN)
3. Possible landfill gas utilisations / gas engines / dual fuel engines

Gas engines:

Advantages: more robust than dual fuel engines, tried and tested

<table>
<thead>
<tr>
<th>Degree of utilisation</th>
<th>η therm. [%]</th>
<th>η electr. [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 %</td>
<td>45.4 to 50.8</td>
<td>32.5 to 38.4</td>
</tr>
<tr>
<td>75 %</td>
<td>45.2 to 49.9</td>
<td>30.0 to 37.1</td>
</tr>
<tr>
<td>50 %</td>
<td>45.3 to 50.3</td>
<td>27.5 to 31.8</td>
</tr>
<tr>
<td>Mean value</td>
<td>47.8 %</td>
<td>33.8 %</td>
</tr>
</tbody>
</table>

Disadvantages: economic operation optimal at methane values of approx. 50 vol.-%

125 to 171 kW th or 80 to 124 kW el.

Dual fuel engines

Advantages: operation with lower methane contents than required for gas engines, low cost

<table>
<thead>
<tr>
<th>Degree of utilisation</th>
<th>η therm. [%]</th>
<th>η electr. [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 %</td>
<td>39</td>
<td>40.5 to 41.5</td>
</tr>
</tbody>
</table>

Disadvantages: operation only possible with pilot fuel, reduced life time compared to gas engines

107 to 160 kW th or 110 to 170 kW el.
3. **Further possibilities to cover the energy demand**

Grid-connected photovoltaic solar power plants

require between 7 and 10 square metres per installed kWp (kilowatt peak, defined as performance at a radiant exposure of 1,000 W / m²). In Central Europe, with an optimum south orientation and an inclination of the modules of approximately 30°, an annual yield between 800 and 1,000 kWh can be expected per kWp nominal plant performance, depending on the position and on the local conditions.

Heating boilers with a two-media burner

are standard heating boilers with specifically-developed burner systems in which landfill gas, biogas, propane, natural gas or fuel oil as combustible gases are converted into thermal energy.
Energy supply of a landfill site in the after care period by LFG, sun, oil, natural gas etc

Variant A:

- Leachate processing
- Building service engineering
- Propane gas heating boiler
- CHP - unit
- Microgas turbine
 - ~ 65 kW$_{el.}$

Gas collection system

- Landfill body
- Landfill gas
- Optimisation and boosting efficiency
 - 1 booster station with 1 compressor 5 bar

Electricity

- Covering the own needs
- Compens. in acc. with EEC ‘09

Utilisation of the existing plant technology:

- Supply and return air system
- Waste gas stack
- Heat extraction

NEW: Compressor & gas processing

The existing flare system remains
Energy supply of a landfill site in the after care period by LFG, sun, oil, natural gas etc

Variant B:

- **Landfill body**
 - Leachate processing
 - Building service engineering
 - Propane gas heating boiler
 - CHP - unit

- **Gas collection system**
 - Landfill gas
 - Optimisation and boosting efficiency
 - 1 booster station with compressor 80 mbar
 - Gas-Otto / dual fuel engine 100 - 125 kW el.

- **Flare**
 - Utilisation of the existing plant technology:
 - Gas supply
 - Supply and return air system
 - Waste gas stack
 - Heat extraction

- **Electricity**
 - Covering the own needs
 - Comp. in acc. with EEC ‘09

The existing flare system remains
Energy supply of a landfill site in the after care period by LFG, sun, oil, natural gas etc

• **Variant C:**

 - **Leachate processing**
 - **Building service engineering**
 - **Gas collection system**
 - **Landfill gas**
 - **Landfill body**
 - **CHP - unit**
 - **PV plant**
 - **Flare**

Utilisation of the existing plant technology:
- Supply and return air system
- Waste gas stack
- **NEW:** roof construction & heat extraction

Electricity
- **Covering the own needs**
- **Comp. in accordance with EEC ‘09**

Optimisation and boosting efficiency
- 1 booster station with 1 compressor 80 mbar

The existing flare system remains
PV plant // basics // evaluation

- The roof surface area usable for the installation of the PV plant is approximately 700 m².
- There is an optimum roof orientation which is adjusted with support frames.
- The carrying capacity of the roof construction is guaranteed.
- From 2011 onwards, the remuneration amounts to 27.31 Cent / kW on average for the total output.
- Therefore, the output-related and graduated remuneration is neglected.
- Degression of 13 % in accordance with the Renewable Energy Law.
- The annual output of a similar plant at the location.
- According to the suggested pricing offers, a 128 kWp (approx.) plant can be installed.
- Annual yield approximately 104,000 kWh (IBN 2011, last update XII 2010).
- Total investment of approx. € 365,000 (last update XII 2010).
- Average remuneration of approx. € 20,500 per annum (operating period of 20 years).
- Annuities approx. € 18,000 per annum (operating period of 20 years).

Besides the utilisation variant presented here, there is also the possibility to let the roof surface area to a leasing company and, in this manner to only provide the roof surface area to third parties. This variant was not examined here.
Heating boiler with two-media burner // basics // evaluation

The investment costs for an appropriate landfill gas burner with boiler and secondary equipment amount to approximately € 34,000, with average maintenance costs of € 1,500 per annum.

Due to the following factors, the combination of a SPP and a landfill gas boiler was not further considered for the comprehensive profitability analysis of the methods:

- The aforementioned examination is based on a SPP utilisation period of 20 years
- Price development of the acquisition costs of the SPP plant difficult to evaluate as a result of the dynamic market situation
- High dependence of the profitability analysis of SPP plants on the currently rather dynamic, politically-induced power remuneration (in accordance with the EEG) which is difficult to evaluate
- Operating costs for the auxiliary firing of the landfill gas boiler tied to the oil price
Energy supply of a landfill site in the after care period by LFG, sun, oil, natural gas etc

Laufzeit und Auslastung

Operation time and load of the sets

Feuerungswärmeleistung
- Microgasturbine
- Anbieter I
- Anbieter II
- Anbieter III
- Anbieter IV
Energy supply of a landfill site in the after care period by LFG, sun, oil, natural gas etc.

Costenvergleich

-200.000 € -150.000 € -100.000 € -50.000 € - € 50.000 € 100.000 € 150.000 € 200.000 €

Firma

Turbine 31.858,42 € 11.250,00 € 62.209,72 € 37.721,94 € -24.487,77 €
Anbieter I 19.143,62 € 19.252,92 € 47.495,38 € 62.624,81 € 15.129,43 €
Anbieter II 17.993,58 € 24.225,00 € 48.746,62 € 59.678,38 € 10.931,76 €
Anbieter III 23.286,65 € 15.375,00 € 51.249,75 € 57.832,56 € 6.582,81 €
Anbieter IV 17.372,12 € 18.000,00 € 43.152,74 € 45.455,45 € 2.302,71 €
Fixkosten 163.912,42 € 163.912,42 €

Annuität p.a.: Ø Wartungskosten p.a.: Ø Betriebskosten p.a.: Ø Erlöse aus Stromverkauf p.a.: Ø Betriebsergebnis p.a.:
Economic comparison

<table>
<thead>
<tr>
<th>Provider</th>
<th>Turbine</th>
<th>Provider I</th>
<th>Provider II</th>
<th>Provider III</th>
<th>Provider IV</th>
<th>Fixed expenses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Invest. aggregate:</td>
<td>€ 208,000</td>
<td>€ 116,200</td>
<td>€ 100,950</td>
<td>€ 140,000</td>
<td>€ 111,600</td>
<td>0</td>
</tr>
<tr>
<td>Delivery, installation and start-up on location:</td>
<td>€ 5,000</td>
<td>€ 7,800</td>
<td>€ 15,000</td>
<td>€ 13,000</td>
<td>incl. invest</td>
<td>0</td>
</tr>
<tr>
<td>Adaptation on location:</td>
<td>€ 10,000</td>
<td>€ 10,000</td>
<td>€ 10,000</td>
<td>€ 10,000</td>
<td>€ 10,000</td>
<td>0</td>
</tr>
<tr>
<td>Total investment costs:</td>
<td>€ 223,000</td>
<td>€ 134,000</td>
<td>€ 125,950</td>
<td>€ 163,000</td>
<td>€ 121,600</td>
<td>0</td>
</tr>
<tr>
<td>Annuity p.a.:</td>
<td>€ 31,858</td>
<td>€ 19,144</td>
<td>€ 17,994</td>
<td>€ 23,287</td>
<td>€ 17,372</td>
<td>- €</td>
</tr>
<tr>
<td>Ø Maintenance costs p.a.:</td>
<td>€ 11,250</td>
<td>€ 19,253</td>
<td>€ 24,225</td>
<td>€ 15,375</td>
<td>€ 18,000</td>
<td>- €</td>
</tr>
<tr>
<td>Ø Additional electricity costs p.a.:</td>
<td>€ 13,596</td>
<td>€ -</td>
<td>€ -</td>
<td>€ -</td>
<td>€ -</td>
<td>€ 75,125</td>
</tr>
<tr>
<td>Ø Additional heat costs p.a.:</td>
<td>€ 5,506</td>
<td>€ 9,099</td>
<td>€ 6,528</td>
<td>€ 12,588</td>
<td>€ 7,781</td>
<td>€ 88,787</td>
</tr>
<tr>
<td>Ø Operating costs p.a.:</td>
<td>€ 62,210</td>
<td>€ 47,495</td>
<td>€ 48,747</td>
<td>€ 51,250</td>
<td>€ 43,153</td>
<td>€ 163,912</td>
</tr>
</tbody>
</table>
Energy supply of a landfill site in the after care period by LFG, sun, oil, natural gas etc

Summary:

<table>
<thead>
<tr>
<th></th>
<th>Turbine</th>
<th>Provider I</th>
<th>Provider II</th>
<th>Provider III</th>
<th>Provider IV</th>
<th>Fixed expenses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ø Revenues from the sale of electricity p.a.:</td>
<td>€ 37,722</td>
<td>€ 62,625</td>
<td>€ 59,678</td>
<td>€ 57,833</td>
<td>€ 45,455</td>
<td></td>
</tr>
<tr>
<td>Ø Operating profits p.a.:</td>
<td>- € 24,488</td>
<td>€ 15,129</td>
<td>€ 10,932</td>
<td>€ 6,583</td>
<td>€ 2,303</td>
<td>- € 163,912</td>
</tr>
<tr>
<td>Operating profits after 10 years:</td>
<td>- € 244,878</td>
<td>€ 151,294</td>
<td>€ 109,318</td>
<td>€ 65,828</td>
<td>€ 23,027</td>
<td>- € 1,639,124</td>
</tr>
</tbody>
</table>

As can be seen from the comparison of the annual operating profits of all variants, gas-Otto engines can be recommended as the most profitable variant for employment on the "concept" landfills, taking into account the indicated boundary conditions (in particular for the requested period under consideration of 10 years).

As far as all possibilities of utilisation are concerned, it is striking that, at the latest during the last three years of operation, the heat requirements cannot completely be covered which involves additional costs.
Real after bidding

At the end of the year all bidders go to BIOGAS plants in Germany and we got only one bidder for these LFG – project - >

These company was approx. 100 % expensive than first budget price.

At the end of day we wait for better prices in 2012
Any questions left?

Knowledge is key and is available when you know where to find it:

www.das-ib.de

Or we see us at your site or here e.g. next break